High-energy studies of cloud-disc collisions María Victoria del Valle Gustavo E. Romero Ana Laura Müller

Instituto Argentino de Radioastronomía

Relativistic Astrophysics and Radio Astronomy Group (GARRA)

High-velocity clouds

Origin:

- Galactic fountains
- Gas stream (e.g. Magellanic Stream)
- Intergalactic filaments

Properties:

- Velocities: 100 500 km s⁻¹
- Neutral hydrogen H I
- Mean density: 0.1 cm⁻³
- Masses: $10^3 10^4 M_{\odot}$

Wakker & van Woerden 2013

Collision with the galactic disc

Clouds with inward velocities will inevitable collide with the galactic disc

Time it takes for a cloud to reach the Galactic plane: t_{fall} = z / v_z ~ 69 (D / 10 kpc) (V / 100 km s⁻¹) Myr

10⁴⁷ - 10⁵² erg are released into the ISM per collision

Tenorio - Tagle 1981; van Woeren, Schwarz & Boer 2006; Wakker & van Woerden 2013

Cloud - disc collision

Two shocks:

$$V_{s1} = - \frac{\gamma + 1}{2} \frac{\int \rho_2}{\int \rho_1 + \int \rho_2} (v_1 - v_2)$$
 cloud

$$V_{s2} = \frac{\gamma + 1}{2} \frac{\int \rho_1}{\int \rho_1 + \int \rho_2} (v_1 - v_2)$$

Disc = 0

e.g., Lee, Kang & Ryu 1996

HVCs sites of particle acceleration in Halo (Hedrick & Cox 1977)

System of shocks

We analysed shocks for different values of:

Galactic disc density n_g: 0.1 - 1.0 cm⁻³ Cloud density $n_c = 1.0 - 0.1 \text{ cm}^{-3}$
 Cloud size R
 : 10 - 50 pc

 Cloud velocity V
 : 100 - 500 km s⁻¹

Disc thickness W_{g} : 200 pc

Nature of the shock (Radiative or Adiabatic): t_{cool} / t_{coll}

Adiabatic shocks:

- ★ Shock through cloud $n_c = 0.1 \text{ cm}^{-3}$, $n_g = 1.0 \text{ cm}^{-3}$ and $V_c = 500 \text{ km s}^{-1}$ ★ Shock through disc $n_c = 1.0 \text{ cm}^{-3}$, $n_g = 0.1 \text{ cm}^{-3}$ and $V_c = 500 \text{ km s}^{-1}$

Collision of light cloud with disc

Parameters:

- Vc = 500 km s⁻¹
- nc = 0.1 cm^{-3}
- ng = 1.0 cm^{-3}
- Rc = 10 pc

Collision of light cloud with disc

Parameters:

- Vc = 500 km s⁻¹
- nc = 0.1 cm^{-3}
- ng = 1.0 cm^{-3}
- Rc = 10 pc

PLUTO code Mignone et. al 2007

Collision of dense cloud with disc

Parameters:

- Vc = 500 km s⁻¹
 nc = 1.0 cm⁻³
- ng = 0.1 cm^{-3}
- Rc = 10 pc

Collision of dense cloud with disc

Parameters:

- Vc = 500 km s⁻¹
 nc = 1.0 cm⁻³
- ng = 0.1 cm^{-3}
- Rc = 10 pc

Shock through cloud

Cloud parameters: Density: 0.1 cm⁻³ Magnetic field: 10 μG Shock velocity: ~ 500 km s⁻¹ Injection time: 0.04 Myr Power injected in protons: 10³⁶ erg s⁻¹ in electrons:10³⁴ erg s⁻¹

Diffusion equation for both protons and electrons:

$$\begin{aligned} \frac{\partial N_p}{\partial t} &= D(E) \left[\frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial N_p}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial N_p}{\partial \theta} \right) \right] \\ &- \frac{\partial}{\partial E} \left(P(R, \theta, E) N_p \right) + Q_p(R, \theta, E, t). \end{aligned}$$

Shock through cloud

Injection of protons for 10 GeV and 100 GeV

Shock through cloud

Non - thermal Spectral Energy Distribution

Disc parameters: Density: 0.1 cm⁻³ Magnetic field: 1 μG Shock velocity: ~ 500 km s⁻¹ Injection time: 0.4 Myr Power injected in protons:8x10³⁶ erg s⁻¹ in electrons:8x10³⁴ erg s⁻¹

Diffusion equation + background cosmic rays

$$J_{\rm RC}^{\rm gal}(E) = 2,2 \left(\frac{E}{{\rm GeV}}\right)^{-2,75} {\rm cm}^{-2} {\rm s}^{-1} {\rm sr}^{-1} {\rm GeV}^{-1}.$$

E = 10 GeV, injection time = 0.4 Myr

x (pc)

Injection of protons of 10 GeV

Non-thermal SED Comparison with background CRs

Comparison with background CRs (protons)

Conclusions and future work

- Cloud disc collisions produce strong shocks, adiabatic in some cases
- A strong energy transfer is produced in the collision
- Adiabatic shock in the cloud:
 - Produces significative NT radio emission
 - Protons might diffuse and emit elsewhere
- Adiabatic shock in the disc:
 - Produces significative NT radio and gamma emission
 - Injects protons with E_p from 10 GeV to 10 TeV

Ongoing work:

Studying the radiative, though rapid, shocks Future work:

- Induced star formation
- Interaction of a HVC with a denser target (molecular cloud)

Thank you!

Diffusion coefficient

